Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Clin Transl Immunology ; 11(10): e1422, 2022.
Article in English | MEDLINE | ID: covidwho-2084351

ABSTRACT

Objective: Influenza A, B and C viruses (IAV, IBV and ICV, respectively) circulate globally, infecting humans and causing widespread morbidity and mortality. Here, we investigate the T cell response towards an immunodominant IAV epitope, NP265-273, and its IBV and ICV homologues, presented by HLA-A*03:01 molecule expressed in ~ 4% of the global population (~ 300 million people). Methods: We assessed the magnitude (tetramer staining) and quality of the CD8+ T cell response (intracellular cytokine staining) towards NP265-IAV and described the T cell receptor (TCR) repertoire used to recognise this immunodominant epitope. We next assessed the immunogenicity of NP265-IAV homologue peptides from IBV and ICV and the ability of CD8+ T cells to cross-react towards these homologous peptides. Furthermore, we determined the structures of NP265-IAV and NP323-IBV peptides in complex with HLA-A*03:01 by X-ray crystallography. Results: Our study provides a detailed characterisation of the CD8+ T cell response towards NP265-IAV and its IBV and ICV homologues. The data revealed a diverse repertoire for NP265-IAV that is associated with superior anti-viral protection. Evidence of cross-reactivity between the three different influenza virus strain-derived epitopes was observed, indicating the discovery of a potential vaccination target that is broad enough to cover all three influenza strains. Conclusion: We show that while there is a potential to cross-protect against distinct influenza virus lineages, the T cell response was stronger against the IAV peptide than IBV or ICV, which is an important consideration when choosing targets for future vaccine design.

2.
Immunity ; 54(5): 1055-1065.e5, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1179683

ABSTRACT

Efforts are being made worldwide to understand the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic, including the impact of T cell immunity and cross-recognition with seasonal coronaviruses. Screening of SARS-CoV-2 peptide pools revealed that the nucleocapsid (N) protein induced an immunodominant response in HLA-B7+ COVID-19-recovered individuals that was also detectable in unexposed donors. A single N-encoded epitope that was highly conserved across circulating coronaviruses drove this immunodominant response. In vitro peptide stimulation and crystal structure analyses revealed T cell-mediated cross-reactivity toward circulating OC43 and HKU-1 betacoronaviruses but not 229E or NL63 alphacoronaviruses because of different peptide conformations. T cell receptor (TCR) sequencing indicated that cross-reactivity was driven by private TCR repertoires with a bias for TRBV27 and a long CDR3ß loop. Our findings demonstrate the basis of selective T cell cross-reactivity for an immunodominant SARS-CoV-2 epitope and its homologs from seasonal coronaviruses, suggesting long-lasting protective immunity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Immunodominant Epitopes/immunology , SARS-CoV-2/immunology , Amino Acid Sequence , Coronavirus/classification , Coronavirus/immunology , Coronavirus Nucleocapsid Proteins/chemistry , Cross Reactions , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , HLA-B7 Antigen/chemistry , HLA-B7 Antigen/genetics , HLA-B7 Antigen/immunology , Humans , Immunodominant Epitopes/chemistry , Immunologic Memory , Models, Molecular , Peptides/chemistry , Peptides/immunology , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology
3.
Cell Rep ; 34(4): 108666, 2021 01 26.
Article in English | MEDLINE | ID: covidwho-1064915

ABSTRACT

Although vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are under development, the antigen epitopes on the virus and their immunogenicity are poorly understood. Here, we simulate the 3D structures and predict the B cell epitopes on the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins of SARS-CoV-2 using structure-based approaches and validate epitope immunogenicity by immunizing mice. Almost all 33 predicted epitopes effectively induce antibody production, six of these are immunodominant epitopes in individuals, and 23 are conserved within SARS-CoV-2, SARS-CoV, and bat coronavirus RaTG13. We find that the immunodominant epitopes of individuals with domestic (China) SARS-CoV-2 are different from those of individuals with imported (Europe) SARS-CoV-2, which may be caused by mutations on the S (G614D) and N proteins. Importantly, we find several epitopes on the S protein that elicit neutralizing antibodies against D614 and G614 SARS-CoV-2, which can contribute to vaccine design against coronaviruses.


Subject(s)
Coronavirus Nucleocapsid Proteins/immunology , Epitopes, B-Lymphocyte/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Matrix Proteins/immunology , Viroporin Proteins/immunology , Adolescent , Adult , Aged , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/immunology , COVID-19/therapy , COVID-19 Vaccines/immunology , Child , Epitopes, B-Lymphocyte/metabolism , Female , Humans , Male , Mice , Mice, Inbred BALB C , Middle Aged , Young Adult
4.
Vaccines (Basel) ; 8(2)2020 Jun 09.
Article in English | MEDLINE | ID: covidwho-591334

ABSTRACT

A new coronavirus infection, COVID-19, has recently emerged, and has caused a global pandemic along with an international public health emergency. Currently, no licensed vaccines are available for COVID-19. The identification of immunodominant epitopes for both B- and T-cells that induce protective responses in the host is crucial for effective vaccine design. Computational prediction of potential epitopes might significantly reduce the time required to screen peptide libraries as part of emergent vaccine design. In our present study, we used an extensive immunoinformatics-based approach to predict conserved immunodominant epitopes from the proteome of SARS-CoV-2. Regions from SARS-CoV-2 protein sequences were defined as immunodominant, based on the following three criteria regarding B- and T-cell epitopes: (i) they were both mapped, (ii) they predicted protective antigens, and (iii) they were completely identical to experimentally validated epitopes of SARS-CoV. Further, structural and molecular docking analyses were performed in order to understand the binding interactions of the identified immunodominant epitopes with human major histocompatibility complexes (MHC). Our study provides a set of potential immunodominant epitopes that could enable the generation of both antibody- and cell-mediated immunity. This could contribute to developing peptide vaccine-based adaptive immunotherapy against SARS-CoV-2 infections and prevent future pandemic outbreaks.

SELECTION OF CITATIONS
SEARCH DETAIL